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ABSTRACT 

For the last decade, advances in machine-learning algorithms provided easy and efficient ways to 

analyze large sets of data in search of correlations that would otherwise be extremely time-

consuming without the use of computers. The use of machine-learning algorithms for smart roads 

to track and analyze traffic attributes allows for highly accurate classifications while still being 

scalable and flexible enough to identify new types of vehicles that have yet to hit the market. 

Furthermore, extremely low power microprocessors have made it possible in the last few years to 

develop embedded systems that can run solely on battery power in multi-year applications without 

the necessity of recharging. Combined with low-power focused communications protocols and 

efficient vehicle classification algorithms, the lifetime of embedded systems can operate beyond a 

decade without any physical interaction after initial setup. This proposed research centers on the 

development of a distributed wireless sensing network that utilizes low power processors in 

conjunction to “in-sensor-node” machine learning algorithms for computation and a power-aware 

communications protocol for the development of a lightweight low-power multi-node MEMS 

sensing network. The collected data can be used for developing advanced models of urban traffic 

flow and for developing better policies to manage the impacts of transportation in metropolitan 

areas. 
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I.  SCOPE 

This report is organized as follows: Section 2 talks about the issues with the current state of 

highway vehicular detection systems and technologies typically associated with such systems. 

Section 3 discusses in depth about the related classification work of previous papers with similar 

ideas and concepts for vehicular detection and classification. Section 4 presents our approach on 

how we decided to design a wireless sensor network, how we tackled the classification problem, 

and the background to our selected machine learning algorithm. Section 5 provides details of the 

developed hardware and, in section 6 we discuss about algorithms for vehicle classification with 

their performance. We conclude the report at section 7 highlighting the research result and 

directions to moving forward with this research.   

II. INTRODUCTION  
Ever increasing highway traffic and inadequate construction of new highways across the US is 

causing the congestion level on our nation’s roadways to spiral out of control. According to the 

US Department of Transportation, surface road and highway traffic has increased by 2 percent and 

33 percent, respectively, between 1987 and 1997 [2]. It is estimated that due to further demand for 

mobility, traffic will continue to increase by more than 40 percent by 2020. Therefore, demands 

for improving and extending the existing road infrastructure, especially around megacities, are 

becoming a major concern that could cost billions of dollars. By efficiently using existing 

transportation networks and advanced traffic control management techniques, cost effective and 

environmentally friendly solutions can be achieved. Thus, there is an essential need for an 

affordable and environmentally friendly solution in order to maximize the capacity and efficiency 

of existing transportation networks. ITS provides a solution that reuses the existing transportation 

network without the need to scrap the whole system. The ITS goals are to provide an efficient 
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solution for reduced travel time, easing delay and congestion, and improving safety. Advanced 

sensing, electronic surveillance, and traffic analysis and control are the main technologies 

employed by ITS to provide real time traffic information to users and policy makers of the 

transportation system. Moreover, different transportation service providers can use the ITS data to 

monitor, route, and control traffic flow. 

  

The success of these intelligent transportation systems significantly depends on the proper design, 

installation, and maintenance of the sensor unit of the system.  Currently available traffic sensor 

systems such as: inductive loop, video, sonar, radar, magnetic, capacitive, PVDF wire, and 

pneumatic treadle, are costly and use electrical power from the power distribution network. Current 

system can cost thousands of dollars for each sensor (video, sonar, and radar) installed on utility 

poles [2]. Moreover, costs for road-installed sensors (pavement) such as inductive, magnetic, 

PVDF wire, capacitive, and pneumatic treadle can span several thousand dollars each. Regardless, 

in-pavement sensors are still popular, due to their accuracy, ability to provide direct information 

with very little ambiguity, ability to monitor road conditions (i.e. presence of ice), all while not 

requiring a human operator. In the US, we have millions of miles of highways however power may 

not be available over all portions. Therefore, to collect traffic data in these areas, a system is needed 

that will be inexpensive to install and maintain, possess a small physical footprint, and can be 

deployed anywhere regardless of direct power availability. Motivated by these novel causes, in 

this report the PI suggests a sensing system based on low-power MEMS where installation is cost-

effective and can remain operational without a direct power supply for years.  

III. RELATED WORKS 
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For vehicle detection, transportation agencies mostly use Inductive Loop Detector (ILD) scheme 

which utilizes inductive current loop (6ft x 6ft, 6ft x 20ft, etc.) that needs to be implanted into the 

road pavement. Our proposed approach requires the installation of a “quarter” sized sensor 

platform that includes a wireless transceiver module, sensors, a low power microcontroller, and 

other minor electronics modules. Furthermore, the sensors will communicate with Electronics 

Communication Unit (ECU) wirelessly, therefore the need to cut into the pavement, as required in 

ILD approach, will no longer be necessary.  The power savings in our proposed method would be 

achieved at two levels, at the node level and the network level. At node level, energy savings can 

be achieved through an optimized vehicle classification algorithm, improved hardware design, and 

also by employing a power-aware communication protocol. Moreover, the sensor node can be 

operated at different power modes such as TI’s Low Power Mode (LPM) modes, also known as 

sleep mode, built into their microprocessor platform. In addition, node level power consumption 

can be optimized through reducing the active processing time. Such low power operating modes 

can be easily controlled by interrupt-driven program flow. To comply with a stringent power 

budget, more savings can be achieved by adjusting the sampling rate on-the-fly.   

 

In [2-16], various authors described different configurations of wireless sensor packages to 

instrument roadways that count passing vehicles, measure roadway vehicle speed, and classify 

vehicles based on axle count and spacing. In [10], the authors proposed a wireless magnetic sensor 

node for vehicle detection with optical wake-up. In [11], the authors described a method for vehicle 

counting for ITS using a noninvasive magnetic-based WSN which would not be affected by 

weather conditions, allowing for very stable and robust data to operate with. The authors, in [15] 

investigated the task of classifying the types of moving vehicles in a distributed WSN in terms of 
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data collection procedure, feature extraction, pre-processing steps, and baseline classifier 

development. Furthermore, [17] describes methods for processing range imagery and performing 

vehicle detection and classification where classification rates of over 92% accuracy were obtained. 

In [18,19], the authors developed an algorithm that detects and tracks a moving target then 

subsequently alerts sensor nodes along the projected path of the target. The method proposed in 

[20] by researchers from UC Berkeley use hill-pattern as its primary selected feature for the vehicle 

detection and classification. The hill pattern is extracted from the vehicle’s magnetic signature. 

While utilizing different aspects of the related works referenced above, we propose the 

employment of a low-power “in-node” machine learning based approach that uses appropriate 

sensors to increase traffic detection and classification to a near 90% accuracy (most of the work 

mentioned above use out-of-node detection and classification). Furthermore, our proposed 

approach utilizes low power operations and energy scavenging schemes in access points to help 

make the system extremely scalable for large-scale deployments. Considering all these 

capabilities, our proposed methodology is a significant milestone towards achieving better traffic 

data collection for the design of smart roads. 
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IV. METHODOLOGY 
 

 

 
Figure 1:  Proposed Architecture for Smart Road Sensing Networks 

 
 A high-level system architecture of our proposed method is shown in Fig. 1. The system is 

composed of sensor nodes to be implanted into the pavement of the road.  In each lane, two sensor 

nodes will be implanted to detect vehicle presence, speed, and type. Each sensor node will be 
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wirelessly connected with an ECU in a STAR networking topology. The ECU will be an on-site 

wireless transceiver and controller that will perform traffic data aggregation from the deployed 

sensor nodes. Furthermore, the ECU will be powered mainly from photovoltaic cells with a 

compact auxiliary battery. If a direct power supply is available, the ECU can be connected directly 

to an AC power line. Whenever a sensor node detects any vehicle event, such as arrival or 

departure, the node will report the event to the ECU with classification information. Once the ECU 

receives the traffic event packets from the sensors, it will store the data locally and after a certain 

interval, the ECU will transmit aggregated traffic data to the regional/county-wide transportation 

data center. 

 

Our in-node approach utilizes TI’s CC430 microprocessor to process the data from a magnetic 

field sensor in addition to transmitting the classification data to the receiver or ECU. The sensor 

we use is a STMicroelectronics LIS3MDL magnetometer sensor utilizing AMR (Anisotropic 

Magneto-Resistive) technologies. Most AMR sensors work using a Wheatstone bridge 

configuration into an operational amplifier. The bridge elements are variable resistors that alter 

with changes of the magnetic field. Converting this output voltage from the Op-amp using an 

analog-to-digital converter (ADC) allows for the microprocessor to work with data of the relative 

magnetic field. The LIS3MDL supplies the magnetic field data on 3-axes in a 16-bit, signed integer 

format from its integrated ADC over a SPI bus controlled by the bus master. The sensors we are 

using are set to a sampling rate of 80Hz in continuous (uniform sampling) mode for accurate and 

consistent data, though the interrupt capability of this sensor allows for the sensor node to be placed 

into a very low-power state and be woken up only once a vehicle approaches the sensing field of 

the magnetometer. 
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Figure 2:  System Test Bed with Lineup of Radio Controlled Cars 

Our small-scale test track along with radio controlled (RC) cars that we use as an analog to real 

world vehicles are shown in Fig. 2. The test bed is 7’ long and is composed of a wooden fence 

section underneath for rigidity and a large plastic sheet above to provide a smooth surface for the 

RC cars to travel over the sensors. Two wooden guide rails are used to keep the RC cars along the 

paths of the AMR sensors and to act similarly to marked lanes in the real world. The RC cars tend 

to stray from driving straight at higher speeds, likely due to poor wheel alignment, causing the data 

gathered between the sensors to fluctuate wildly, thus requiring the railing. The points marked with 

the blue circles in Fig. 2 signify the locations where the two STMicroelectronics AMR sensors are 

located, each attached to a microprocessor used for in-node classification. 

To determine when a vehicle passes over our AMR sensor, we first have to determine the 

background magnetic field for where our sensor is placed; this is the baseline. In order to use our 

sensor system in multiple environments, the ability to reset baseline values in each new environment 
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is crucial. The adaptive baseline gives us this ability. Once the baseline is determined, the values 

are subtracted from each raw axis data to effectively zero out the background magnetic noise floor.  

Next, a threshold must be determined such that any ferromagnetic material that causes the 

magnitude to rise past will start the detection window for the vehicle. The threshold detection value 

should be adjusted such that only vehicles would be detected while lighter ferrous materials and 

other sources of noise will stay below the selected threshold. During the detection window, the 

processor initially extracts raw data used by the PC to calculate vehicle features such as the 

minimum, maximum, mean, range, standard deviation, and other features of each of the axes’ data.  

The best features according to the algorithm are then implemented in-node with no further 

assistance from the PC.  
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V. HARDWARE DEVELOPMENT 
In order to produce the desired performance and provide for a long endurance system, new 

hardware was designed to take account for the low power requirements of the project scope. While 

the new hardware uses the same processor and radio interface from the previous version, the 

CC430F5137, but switch out the old Honeywell magnetometer for a LIS3MDL magnetometer 

from STMicroelectronics. This new magnetometer has several benefits over the older sensor: uses 

SPI as opposed to I2C for lower power communication, uses less power during sampling, has a 

wider set of options for full scale range detection, and can generate interrupts when the magnetic 

field magnitude exceeds a programmable threshold, thereby allowing for the system to only sample 

from the device when a vehicle is nearby. Readings are updated by the magnetometer’s on-board 

controller in bulk and a data ready (#DRDY) signal is sent to the sensor node controller to indicate 

new data is available to be read. Magnetometer data is read over a 3-wire SPI bus. 

 

Figure 3: A simplified Wireless Sensor Node block diagram of the hardware architecture 
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Figure 4: Wireless Sensor node desinged for vehicle detection  

The new design also switched out the chip antenna for a meandering PCB antenna as a feasibility 

approach to implement future cost reduction options, should it become necessary for a production 

version. This design still utilizes the 915MHz ISM frequency band. 

The sensor node uses a 10-pin, 1.27mm pitch header for programming and interfacing to a 

power analysis module, referred to as the Node Analyzer (NA), shown in Figure 5.  The NA is a 

custom designed power logging tool which allows for sensor power profiling. The NA contains a 

microcontroller that will be able to communication through a UART to the sensor node and put 

the sensor node into the commanded state so the power utilization might be read. The NA contains 

power monitoring circuitry as well as a digitally controlled, variable voltage regulator.  The power 

sourced from the NA is fed into the sensor node during operation while the power usage of the 

device is closely monitored via the NA.  
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Figure 5: Node Analyzer (NA) 

To program the Sensor Node, MSP-FET, or MSP-FET430UIF is required as well as a 

programming adapter board designed to convert the programmer’s 14-pin, 2.54mm pitch header 

to the 10-pin, 1.27mm pitch header on the sensor node. Sensor nodes are programmed and 

debugged over the Spy-Bi-Wire interface. The sensor node boards utilize the 10-pin header to 

reduce the overall sensor node size. The programming setup requires the use of an adapter board 

to convert the 14-pin, 2.54mm programmer header to the 10-pin, 1.27mm header used on the 

sensor node (shown in Figure 6). 

A. SENSOR NODE HARDWARE DESIGN  
 As described in the hardware architecture above, the block diagrams are shown here in a 

schematic format to provide detailed information of each components and circuitry used in the 

wireless sensor hardware. As shown in Figure 7, this schematic capture and PCB layout is done 

using the open source KiCad EDA software. 
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Figure 6: Sensor node programming setup 

 

 
Figure 7: PCB layout of the Wireless Sensor Node 
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B. HARDWARE COMPONENTS 
 The Wireless Sensor Node that we designed and tested for the vehicle classification 

algorithms is shown in Figure 4 and 7.  The following major components on the boards and its 

features are elaborated further in this section. 

 
Microcontroller – The CC430F5137 is SoC from Texas Instruments designed for low-power 

wireless communication applications with its built-in RF transceiver. It consists of two Universal 

Serial Communication Interfaces (USCI), where USCI-B0 is used for the SPI to interface to the 

magnetometer. In the schematic the SPI lines where mark as MAG_SDI, MAG_SDO, MAG_SCK, 

and MAG_CS, which stands for the magnetic sensor to the microcontroller with the corresponding 

description: Slave Data Input (SDI), Slave Data Output (SDO), Slave Clock (SCK), and the Chip 

Select (CS), respectively. These lines serve the data and configuration commands between the 

CC430 microcontroller and the magnetometer. 

Magnetometer – the LSI3MDL is connected through the SPI lines. The sensor is capable of 

providing interrupt capability for when the magnetic field intensity changes beyond some 

determined threshold. The magnetometer is able to select a full-scale range of ±4/±8/±12/±16 

gauss. 

Trigger Interrupt – 74LVC1G08 is an AND gate logic circuit which allows the processor to be 

configured to interrupt when both the magnetic field is above the interrupt threshold and there is 

data ready. 

Energy Harvesting Interface – is an input port for an energy harvesting power source beside the 

Lithium-based, 3.3V 1Ah CR2477 battery coin-cell. In this project, two MOSFETs are used for 

reverse polarity protection for both input power sources. 
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DC-DC Converter – TPS62730 – is step-down DC-DC converter optimized for ultra-low power 

wireless applications. It has an input voltage range from 1.9VDC to 3.9VDC where in our case we 

convert the 3.6VDC to 2.1VDC. Also, the TPS62730 provides up to 100mA output current and 

allows the use of tiny and low cost chip inductors and capacitors to further reduce the size of the 

sensor node. 

Balance-Unbalance (Balun) – 0915BM15A0001 is a 915MHz impedance matching circuitry for 

RF transceiver of the CC430F5137 chip. It is connected in between the microprocessor chip’s RF 

front and the inductor-capacitor (LC) bandpass filter of the antenna. 

PCB-Antenna – the radio antenna is a PCB design, etched to the tracing on the PCB. This 

approach provided for a medium size antenna that fits perfectly on the 30mm x 30mm PCB and is 

low cost. This antenna design was based on the Evaluation Module (EM) board recommendation 

for 868/915/955 MHz PCB spiral-type found in Application Note 058 from Texas Instruments. 

This approach allows for a reduce component count and serves as a feasibility study as an option 

for cost reduction. 

Spy-Bi-Wire JTAG Protocol - is a serial communication protocol for programming and 

debugging firmware using Spy-Bi-Wire interface on the programmer. The pins from the 

microcontroller are then connected to the Molex 10-pin header for connection to the MSP-FET 

programmer. 

C. HARDWARE FOR POWER PROFILING 
 Another board that we developed is the Node Analyzer (shown in Figure 5 and 8), as 

discussed in the above section was used in order to determine the power consumption of the 

Wireless Sensor Node board in the actual implementation. The NA is composed of a “current 

sensor” that was used for monitoring the power consumption of the attached sensor node. The 

main idea of implementing low power profiling to the SN board is to be able to make sure the 
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sensors can keep on running for years without replacing the battery. To realize this scenario, we 

developed this board - Node Analyzer board (NA), which is used to determine the power 

consumption of the SN board. The schematic of the Node Analyzer board is shown in Figure 8. 

D. NODE ANALYZER BOARD 
 

 
The NA board is mainly composed of the following chips:  

ATMega328P: Microcontroller that reads the current consumed in the SN board through other 

component on the NA board, which is the Current Sensor INA219 chip. It is also composed of a 

voltage regulator that provides the power to the SN board while under test. Also, a UART-to-USB 

chip FT320X is used to interface to a PC that runs the Node Analyzer Companion Software 

(NACS) that provides the control of the power profiling sequences and reads the log data to view 

Figure 8: Schematic diagram of the Node Analyzer  
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the power consumption. The NA board is able to control and analyze the power profiling sequences 

of the SN board and to be able view the power consumption parameters while under test.  

UART communication: The UART connection to the node analyzer will enable for a set of 

commands. Some specific to the analyzer and some intended to be sent to the sensor nodes. The 

profiles sent to the sensor nodes are static and arguments are not needed. Therefore, a single byte 

will be encoded to determine what operation to take. Commands for the analyzer are for power 

settings, or resets. The node analyzer will continuously send power information and a timestamp 

of the operation to the PC. There is a companion application that provides a GUI of this 

information. This data is the main advantage which will enable better refinement and iterations of 

device settings or algorithms. 
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Figure 9: Sample power profiling capture, denoting power consumption levels at various operating 
modes. 
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E. POWER PROFILING TASK 
 We have included here an example of a power profiling graph that could be applied to the 

Wireless Sensor Board which can be controlled by the Node Analyzer board. This power profile 

graph shown in Figure 9 indicates that when an interrupt from a vehicle passing over the Sensor 

Node, the SN starts to process the data, extract the features, perform the Decision-Tree algorithm, 

and transmit the result for about 0.001ms with a current consumption of 35mA to the receiver. 

Once the processing the transmission is done the Wireless Sensor Board goes back to Standby 

Mode or Sleep Mode, consuming approximately 156uA and 46uA, respectively, until the next 

interrupt occurs. While no interrupt occurs, the SN board will remain in a low-power mode, thus, 

consuming less power that would allow the battery to last for years without any replacement. 
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VI. VEHICLE CLASSIFICATION AND RESULTS 
The arduousness of vehicle identification partially stems from the difficulty of visually observing 

a single vehicle amongst a multitude of surrounding vehicles that are moving in parallel or opposing 

directions. Even so, there are a number of external and internal characteristics that can’t be easily 

observed, which prevents these characteristics from successfully classifying these vehicles. Due to 

this, this task has the potential to be more feasible with the use of wireless sensors that are embedded 

within the pavement of these roads. In our research, we utilized a sensor that collects the distinctive 

features that will greatly assist us in the process of vehicle classification, and to further clarify the 

procedure we enacted, vehicle detection involved the use of a 3-axis anisotropic magnetoresistive 

(AMR) sensor that is wirelessly connected to a central controller while it obtains data detected from 

passing vehicles. These sensors measure the amount of variation in the magnetic field (MGauss) in 

x, y, and z directions based on the direction of the electric current and magnetization [21]. 

 

By using these embedded systems and machine learning algorithms, we are also simplifying the 

process of vehicle classification. Moreover, in implementing an approach that involves machine-

learning algorithms, these systems are able to observe and determine various patterns of the 

collected data and associate them to a vehicles classification. There are many approaches to how 

machine learning could be used for the present task such as: Decision Tree Classification, Linear 

Regression, Support Vector Machines, Neural Networks, etc. However, the general methods that 

should be considered are machine-learning algorithms that can be used for automated classification. 

We have considered applying a select few of the many possibilities of machine learning 

classification algorithms, and generally, despite the fact that the aforementioned classification 

algorithms differ conceptually in terms of how it performs acts of classification, there are certain 

parallels including the goals each algorithm aims to achieve as well as the needed information 
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required for each machine learning algorithm. The machine learning classification algorithms used 

in our research follow the principle of supervised learning, which uses datasets composed of 

multiple data samples where each set of data represents a certain sample [22]. Attached to these 

samples are labels, which indicate the type of classification the data corresponds to, and the nexus 

between the label and the data sample is essential considering that it allows us and machine learning 

algorithms to distinguish the types of classifications that are associated to certain types of samples. 

Supervised machine learning algorithms require two different types of datasets: a training dataset 

that represents a sample of the data collected that will be used to effectively train the machine 

learning algorithm in order to predict the classification of a new set of data and a testing dataset, 

which, after the machine learning algorithm has been trained, will then be analyzed by the 

classification model. Broadly, the machine-learning algorithm observes each of the sample data 

while remaining unaware of the labels associated with it. The machine learning algorithm attempts 

to predict the classification of the sample data it observes by basing its analysis from the dataset 

that was used in order to train the machine learning algorithm. After the machine learning algorithm 

predicts all of the sample data from the testing dataset, we are able to measure its performance by 

juxtaposing the algorithms predicted classifications with real classifications from the labels in the 

provided testing dataset.  After we determine the performance of the implemented machine learning 

classification algorithms, we can then execute our methodology to observe which classification 

algorithms achieve the best results. 

 

In order to provide an overview of each classification algorithms performance, we applied 

Machine Learning based Vehicle Classification (MLVC) architecture; furthermore, a software 

implementation was designed to obtain, process, and display necessary experimental and resulting 

data. Python was used for the proposed architecture with the use of libraries to help process and 
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output data. These libraries include: scikit-learn [23], openpyxl [24], matplotlib [25], etc., and in 

utilizing these libraries, we will be able to implement the proposed architecture in order to solve the 

issue of classifying vehicles using machine learning algorithms. Figure 10, depicts the flow diagram 

of the MLVC architecture: 

 

 
Figure 10: Flow diagram of MLVC Architecture 

 

The first block in the architecture is where we retrieve raw data from the sensor, consisting of 

measurements from the AMR sensor that detect changes in the magnetic field with relation to the 

x, y, and z dimensional space (as shown in Figure 11 and 12). Each sample of data consists of a 

trial run where an experimented vehicle is driven over the sensor, thereby allowing the sensor to 

collect data. In addition, all trial runs would be stored onto a readable file that would be used in the 

next blocks of the architecture. 

 

 
Figure 11: AMR Sensor data in three dimensional space 
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Figure 12: AMR Sensor data when car passes over sensor 

 

Our trials were done with six different vehicles: three sedans (2003 Honda Accord, 2009 Honda 

Accord LX, 2007 Hyundai Elantra), two hatchbacks (2004 Ford Focus ZX3, 1999 Subaru Outback 

Impreza), and one truck (2001 Chevrolet Silverado LT), and it is after retrieving the raw sensor data 

that it would be preprocessed before any features could be calculated and extracted from the raw 

data. Here, we have created a training dataset and testing dataset, and we project that any 

implemented machine learning classification algorithm in our research would be able to analyze 

and distinguish the vehicles using the dataset. The implemented machine learning algorithms 

require that the datasets be in a specific structure; thus, it is imperative that the raw data from the 

sensor be preprocessed for it to meet the standard. 

In the preprocessing of the raw data, we reconsidered the vectors that would be applied when 

generating which datasets for the machine learning algorithms to employ. Rather than utilizing the 
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raw x, y, and z axes from the data collected from the sensor, we considered vectors z, xy, and xyz. 

Where z consists of the raw data from the sensor according to the z axis, xy and xyz signify the 

magnitude of the specified vectors [26], which is calculated as follows: 

𝑧𝑧 = 𝑍𝑍 

𝑥𝑥𝑥𝑥 = �𝑋𝑋2 + 𝑌𝑌2 

𝑥𝑥𝑥𝑥𝑥𝑥 =  �𝑋𝑋2 + 𝑌𝑌2 + 𝑍𝑍2 

 

 

In order to allow the machine learning algorithms to reduce any inaccuracies in the data, it was 

necessary to crop the data to remove background noise (depicted in Figure 13). This would allow a 

cars processed data to not only consist of when the car is detected by the sensor but also the moment 

it has left its scope and ensures that the data only comprises relevant vehicle data once it is 

processed. 
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Figure 13: Cropping sensor data 

 

There was also the consideration of applying different types of transformations to the raw data 

in order to compare the different results. For instance, we considered normalizing the raw data when 

moving through the Machine Learning Architecture. Applying this transformation allows us to 

compare the results of two instances when testing the classification algorithms: one, where only 

raw data is used, and two, where the raw data has been normalized. 

In Machine Learning, features are unique characteristics or attributes that can be measured to 

produce a numeric value; furthermore, they are essential. Analyzing them will allow us the ability 

to distinguish the classifications of each vehicle in our sample. For vehicle classification using 

AMR sensors, such features signify the changes in magnetic fields in x, y, and z directions, and in 

using this preprocessed data, we can apply more diverse transformations (either statistic or 
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frequency-based) to the data in order to obtain clear results. The statistical features comprise: 

minimum, maximum, mean, median, peak-to-peak (p2p), root-mean-square (rms) [27], p2p-rms, 

standard deviation, variance, skewness, and kurtosis. The frequency-based features encompassed 

Fast Fourier Transform characteristics which comprised: fftmagmax, fftmagmax, and fftmean. 

Likewise, we must consider the vectors that are relevant for each sample, which are the 

aforementioned Z, XY, and XYZ vectors. For our experiments, we gathered the preprocessed data 

pertaining to the vehicles and focused on applying a combination of features to a particular vector. 

This resulted in the final step of preparation for the training and testing datasets so that they could 

be applied onto the Machine Learning Classification Algorithms. 

Throughout this project it was observed that some features yielded more favorable results than 

others and that some combinations of features worked together more cohesively than others. We 

primarily used the Classification Tree and Random Forest algorithms in order to determine which 

features had the most influence in the classification process. However, statistical tools such as 

Scatterplot Matrices were also used in order to visually compare the feature data for each vehicle 

upon each considered vector. When a successful combination of features are used together in a 

classification algorithm, they typically achieve high scores in the predictions phase. One of the 

primary reasons we spent time searching for a wide array of features was to conduct a survey to test 

their performance and cohesion when used as combinations in various classification algorithms. In 

addition to applying brute force approach to test the prediction accuracy, we also used Scatterplot 

matrices to aid in our search for the optimal combination. One of the scatterplot matrices is shown 

in Figure 5 which demonstrates the relationship between peak2peak value of xyz vector, mean value 

of xy vector, median value of xyz vector, and mean value of xyz vector. 
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Figure 14: Scatterplot Matrix of xyz_p2p, xy_mean, xyz_median, xyz_mean 

 

Throughout this project, it was observed that some features yielded more favorable results than 

others and the combinations of features worked together more cohesively. Primarily, we used the 

Classification Tree and Random Forest algorithms to determine which features had the strongest 

influence in the classification process; however, statistical tools such as Scatterplot Matrices were 

also used in order to visually compare each vehicles feature data upon each considered vector. When 

successful combinations of features are used together in a classification algorithm, they typically 

achieve high scores in the predictions phase, and one of the primary reasons we searched for an 

eclectic array of features was to conduct a survey to test their performance and cohesion when used 

as combinations in various classification algorithms. In addition to applying a brute force approach 

to test the prediction accuracy, we also used Scatterplot matrices to aid in our search for the optimal 

combination. One of the scatterplot matrices is shown in Figure 14, which demonstrates the 

relationship between peak2peak value of the xyz vector, mean value of the xy vector, median value 

of the xyz vector, and the mean value of xyz vector. 
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In consideration of our exploration for the ideal feature combinations, we must acknowledge the 

limitations of our testing data and how external factors may interfere with our features. Although 

some features might seem to produce favorable results regarding vehicle classification when trained 

on numerous iterations of the same car, it is naive to think that all cars of a single make and model 

will be identical on public roadways. Statistical features such as min and max, although scoring 

high classification rates, are negatively affected by certain factors (e.g. improper installation, 

calibration error, carriage weight, or tire pressure) that may cause slight height differences between 

the car and the sensor. An improperly installed sensor might be off center or at a different depth in 

the pavement, which could exacerbate errors in a rigid prediction model. Similarly, a lowered car 

will most likely read higher levels of magnetic field disturbance due to its closer proximity to the 

sensor. Although one could argue that a minimal difference in proximity in the magnitude will not 

affect the sensor readings on a macro scale, we can’t make assumptions until more comprehensive 

test samples are gathered. Because of this, these factors are a concern that will likely need to be 

addressed in the future. 

The machine learning classification algorithms that were implemented in our research were: 

Decision Tree Classification Algorithm, Random Forest, and Multilayer Perceptron. The 

implemented machine learning classification algorithms would go through the training process with 

the necessary dataset before analyzing the testing dataset and predicting the classifications of the 

vehicles within the sample data. Also, we will use Decision Tree and Random Forest algorithms 

regarding these classification algorithms in order to determine which features had the largest 

influence in the classification process. Then, we will use these features in Multilayer Perceptron. 

A. DECISION TREE ALGORITHM 
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In our previous research [28], we made use of algorithms, such as C4.5a machine learning algorithm 

that outputs a decision tree model structured on the number of feature or attributes that are used to 

train the model of the decision tree [23]. This study proposes a similar method of classifying the 

sample data, but instead, it uses the Classification and Regression Tree (CART) Algorithm in order 

to generate a decision tree. Moreover, the CART implementation processes the training data sets 

that it receives and determines which features possess the most variance between each vehicle [26]. 

In other words, we fed an abundant amount of features and allowed the algorithm to determine 

which features were the most important. The algorithm then defines a certain threshold for each 

important feature in which a particular class of vehicles would either surpass or sustain. After 

defining the threshold for each comparable feature, the decision tree algorithm would generate an 

appropriate structure allowing it to classify vehicles based on their features. Moreover, the 

advantages of the Decision Tree Algorithm permit us to easily understand the decision making 

process structure for the algorithm. For instance, by observing a visualized decision tree of the 

algorithm, we are able to see the possible decision making paths that the algorithm traverses. Once 

this tree structure is generated, it is quite feasible to implement in low-powered electronic devices 

such as our vehicle classification node device; however, some notable flaws of the Decision Tree 

Algorithm are that the structure of the tree that was generated must be balanced in order for the 

algorithm to perform efficiently. Unfortunately, this is not always a guarantee when the tree is 

generated. By applying the testing dataset onto the CART algorithm, each data sample from the 

dataset is analyzed by the decision tree root’s machine learning technique. Here, it is compared to 

the threshold defined at each node of the tree and traverses to either the left or right child of the 

node depending on how the vehicles data equates to the threshold defined in that node. A prediction 

is made when the decision is rested on a leaf of the tree [29]. 
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B. RANDOM FOREST ALGORITHM 
 

Another machine learning approach related to the methods used in the Decision Tree Classification 

Algorithm is the random forest method, which is deemed as an ensemble machine learning 

technique that utilizes a set of classifiers and averages their predictions before applying their 

decision onto an instance of data [30]. The random forest method uses the principle of a decision 

tree. Nevertheless, it expands the concept further by training multiple decision trees based on 

subsets of the dataset that are inputted into the machine learning algorithm in order to create a forest 

of decision trees [22] through the training process. The process consists of building each decision 

tree from the training datasets bootstrap sample where a random subset is selected from the dataset, 

and by creating multiple decision trees, the machine learning algorithm can combine the predictions 

of all the trees at their disposal. While this would potentially increase bias within the prediction 

process, the variance decreases upon using this technique. With these statistical differences, 

combining the predictions from the decision trees in the random forest algorithm potentially 

increases the accuracy of its predictions, which is significant compared to those made by relying on 

a single decision tree. Once this decision tree is made, it is easily implementable into low-powered 

electronic devices, including our vehicle classification node. Unfortunately, due to the amount of 

decision trees that would be utilized, both the training process and testing process can be costly in 

time and memory resources [22]. 

The prediction process abides similarly when applying the testing dataset onto a single decision 

tree; however, since the random forest is an ensemble machine learning technique, the process is 

compounded numerous times based on the amount of decision trees generated from the random 

forest method. The algorithm then averages all of the predictions made from each application to 

conclude a decision of a sample data link to a vehicles particular classification. 
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C. MULTILAYER PERCEPTRON (MLP) ALGORITHM  
 

Another machine learning approach used in our project is the Multilayer Perceptron (MLP) 

classifier; it is a common subset of forward feeding neural networks that utilizes one or more hidden 

layers of perceptrons that can approximate non-linear functions of the input [22]. Training data is 

passed into the nodes of the input layer each representing a feature where the data gets fed through 

the neurons. As the data is passed through the neural network, the errors are calculated, and minor 

updates to the weights of the nodes are back propagated into the network. The nonlinear 

discriminant perceptrons in the hidden layers allow MLP to identify complex nonlinear 

relationships such as those found in vehicle classification. In fact, artificial neural networks such as 

MLP have been used extensively in studies involving vehicle transportation [31]. In our project, we 

used the Stochastic Gradient Descent (SGD) learning mode (an iterative optimization technique 

that is used to find the local minima of a cost function by making an initial estimate and updating it 

in small steps until the derivative reaches zero [22]) to train our MLP neural networks. We 

experimented with our alpha tuning parameter by using values between 0.0001 and 0.8 to find the 

most optimal settings for convergence in our training algorithm. Also, it is necessary to note that 

Stochastic Gradient Descent is an efficient training algorithm in large datasets since it does not 

require going through each sample to come to a conclusion. This makes SGD the de facto training 

algorithm in back propagation neural networks, especially considering that the networks often have 

very large training sets [32]. 

D. PERFORMANCE ANALYSIS  
 
The classification algorithms implemented in our project include Decision Trees, Random Forest, 

and Multilayer Perceptron. Each algorithm yielded different results in performance and prediction 

accuracy. Principally, some algorithms performed more favorably depending on the combination 
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of features that were applied on the dataset it was trained on. On the contrary, there were also 

algorithms that performed less efficiently than average when using certain feature combinations. 

The use of Confusion Matrices allows us to visually determine a classification algorithms accuracy 

by comparing its predictions with the true value when analyzing a testing dataset. 

 

The results of the CART Decision Tree Algorithm were generally favorable, with most feature 

combinations scoring an average prediction accuracy of 94% when using a raw dataset from 

statistical features or frequency based features. However, using a normalized dataset with statistical 

features yielded results approximating 90% (Figure 15). While the scores of a raw dataset are 

higher, it is generally more applicable to use a normalized dataset since the scalability would remain 

consistent when using different sensors; this is contrary to a raw dataset, which is not likely to 

possess such results. Using the frequency based features, the classification tree algorithm yielded 

mixed results with accuracies as high as 85% and as low as 77%, indicating the features 

ineffectiveness in the classification process. Using the decision tree algorithm, we noticed the 

significance of the statistical features including variance, kurtosis, Fig. 6: Normalized Confusion 

Matrix: Classification Tree z, xy, xyz - median, mean, rms, p2p, p2prms, stdev, variance, kurtosis, 

skewness and the skewness of a dataset. By using these features, the classification tree was able to 

perform better than other instances that did not use these features, which would indicate that such 

statistical features would have a strong influence in the classification process. Due to its inheritably 

low computation costs, the decision tree outperformed most of the other algorithms, and for a sensor 

node implementation, decision trees provide the easiest and most direct solution because it is 

fundamentally based on conditional logic [29]. Given these qualities, the CART decision tree 
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algorithm is a considerable method for vehicle classification as it allows us to visualize the decision 

making process (Figure 16). 

 
Figure 15:  Confusion matrix for classification tree algorithm 
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Figure 16: Decision Tree Classification Demonstration 

 

The Random Forest algorithm performed slightly better than the Classification Tree algorithm 

with most results averaging a 93% prediction accuracy when using statistical features from 

a  normalized dataset. This is contrary to the Random Forest algorithm, which averaged an 87% 

prediction accuracy when using frequency based features upon a normalized dataset.  While the 

random forest algorithm may have produced slightly better results than the classification tree 

algorithm, it is essential to note that the computation level exceeds that of the classification tree 

algorithm. As mentioned in the analysis of the classification tree algorithm, having more features 

considered in the random forest algorithm would result in the same effect on the level of 
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computation required. In other words, the more features that the algorithm needs equates more 

computations.  When applied onto a sensor node for vehicle classification, this would have 

detrimental effects, which are further compounded considering that the random forest algorithm 

uses multiple decision trees when formulating its decisions. Generating multiple decision trees 

would certainly have a mass effect on the computation needed to determine a vehicles classification; 

thus, it is important to optimize the use of the random forest algorithm so that no additional 

computation is needed when ideal  results can be achieved via an adequate performance. One form 

of optimization is limiting the number of decision trees generated by the random forest algorithm. 

Figure 17 shows that the random forest algorithm is able to achieve an ideal level of prediction 

accuracy with less trees than instances (note: especially when compared to those used by the 

algorithm). If we applied the random forest algorithm onto a sensor node, we could tune the 

algorithm so that it only generates the necessary amount of decision trees. 

An alternative to optimizing the random forest algorithm is restricting  the maximum depth of 

the tree’s structure, which would reduce the  computation level at the potential cost of reducing its 

ability in attaining  a high prediction accuracy. Figure 18 depicts the influence of the trees depth 

on  the algorithm’s total accuracy. 
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Figure 17: Number of Trees in Random Forest VS Accuracy 

 

 
Figure 18: Depth of Trees in Random Forest VS Accuracy 

 

Multilayer Perceptron was another promising classification algorithm that we focalized in our 

research, and it is essential to note that MLP and neural networks operate as a universal tool  for 

solving an array of classification problems, while providing a variety of tuning parameters that 

optimize both its speed and complexity. Additionally, the fact that  it can solve complex problems, 

such as car classification, proved its necessity for our project. After tinkering with tuning parameters 
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to find the most optimal combinations, they  provided accuracies above 85 percent, with some even 

scoring in the high 90 percentiles. Contrarily to Decision Trees, MLP supplies us with a higher 

degree of flexibility and  sustainability but at the cost of lower efficiency and difficult 

implementation. Although neural networks are one of the more computationally expensive 

classification techniques, it is imperative to recognize that with the acquisition of more sample  data 

and vehicle categories, a properly implemented MLP algorithm will have a higher scalability than 

other more rigid models. Essentially, having a higher-level solution provides a safety net in the 

event that simpler methods (e.g. decision  trees) become inadequate. In such cases, we could adjust 

our architecture by outsourcing road sensor data to a powered central processing node, which could 

process and classify with more powerful and sustainable algorithms. 
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VII. CONCLUSIONS 
 

In this project, we have designed Wireless Sensor Node for automatic vehicle classification that 

could potentially replace traditional inductive loop systems. The new hardware was designed to 

take into account the low power requirements of the project scope. The designed sensor note uses 

CC430F5137 system-on-chip micro-controller, and LIS3MDL ARM magnetometer from 

STMicroelectronics. This new magnetometer has several benefits over the older sensor: uses SPI 

as opposed to I2C for lower power communication, uses less power during sampling, has a wider 

set of options for full scale range detection, and can generate interrupts when the magnetic field 

magnitude exceeds a programmable threshold, thereby allowing for the system to only sample 

from the device when a vehicle is nearby. 

 
In this project, we experimented different machine learning based vehicle classification 

algorithms. We were able to extract various statistical and frequency-based features from the raw 

sensor data vectors.  Then, we prioritized different machine learning algorithms in order to remedy 

vehicle classification problems. Broadly, algorithms such as decision tree and random forest are 

potentially easier to be implemented on sensor nodes with computation constraints; nevertheless, 

they are more rigid in learning complex patterns in the dataset and less scalable for practical 

industrial solutions. This proves contrary to multilayer perceptron, which is not only more scalable 

but also capable of providing a higher accuracy while still requiring more computation resources. 

For future developments in our research, we are interested in gathering more data from different 

types of cars; in addition, there are more machine learning algorithms that we can evaluate in the 

machine learning based vehicle classification algorithm, which would hopefully result in a higher 
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accuracy and yield more generalized models. Based on our research results, we have submitted an 

article [1] in IEEE Sensors. 

 

 

  



38 
 

VIII.  REFERENCES 
 
[1] A. Ameri, H. Agnote, S. Cagle and M. Mozumdar, "Machine Learning Based Fine Grained 
Vehicle Classification For Next Generation Smart Roads", IEEE Sensors Journal, 2018. 
(submitted, under review) 
 
[2] Gordon, R. L., Reiss, R. A., Haenel, H., Case, E. R., French, R. L., Mohaddes, A., & 
Wolcott, R. (1996). TRAFFIC CONTROL SYSTEMS HANDBOOK-REVISED EDITION 1996 
(No. FHWA-SA-95-032). 
 
[3] Knaian, A. N. (2000). A wireless sensor network for smart roadbeds and intelligent 
transportation systems (Doctoral dissertation, MIT Media Lab). 
 
[4] Bajwa, R., Rajagopal, R., Varaiya, P., & Kavaler, R. (2011, April). In-pavement wireless 
sensor network for vehicle classification. In Information processing in sensor networks (ipsn), 
2011 10th international conference on (pp. 85-96). IEEE. 
 
[5] El-Tawab, S., Olariu, S., & Almalag, M Friend: A cyber-physical system for traffic flow 
related information aggregation and dissemination. InWorld of Wireless, Mobile and Multimedia 
Networks (WoWMoM), 2012 IEEE International Symposium on a (pp. 1-6).. 
 
[6] Bathula, M., Ramezanali, M., Pradhan, I., Patel, N., Gotschall, J., & Sridhar, N. (2009). A 
sensor network system for measuring traffic in short-term construction work zones. In 
Distributed Computing in Sensor Systems (pp. 216-230). 
 
[7]. Cheung, S. Y., Ergen, S. C., & Varaiya, P. (2005, November). Traffic surveillance with 
wireless magnetic sensors. In Proceedings of the 12th ITS world congress (Vol. 1917, p. 
173181). 
 
[8]. Yoo, S. E. (2013). A wireless sensor network-Based portable vehicle detector evaluation 
system. Sensors, 13(1), 1160-1182. 
 
[9]. Papp, Z., Sijs, J., & Lagioia, M. (2009, December). Sensor network for real-time vehicle 
tracking onroad networks. In Intelligent Sensors, Sensor Networks and Information Processing 
(ISSNIP), 2009 5th International Conference on (pp. 85-90). IEEE. 
 
[10]. Sifuentes, E., Casas, O., & Pallas-Areny, R. (2011). Wireless magnetic sensor node for 
vehicle detection with optical wake-up. Sensors Journal, IEEE, 11(8), 1669-1676. 
 
[11]. Liepins, M., & Severdaks, A. (2013, November). Vehicle detection using non-invasive 
magneticwireless sensor network. In Telecommunications Forum (TELFOR), 2013 21st (pp. 
601-604). IEEE. 
[12] Xing, J., & Zeng, Q. (2007). A model based vehicle detection and classification using 
magnetic sensor data (Master Thesis). 
 



39 
 

[13] Padmavathi, G., Shanmugapriya, D., & Kalaivani, M. (2010). A study on vehicle detection 
and tracking using wireless sensor networks. Wireless Sensor Network, 2(02), 173. 
 
[14] Caruso, M. J., & Withanawasam, L. S. (1999, May). Vehicle detection and compass 
applications using AMR magnetic sensors. In Sensors Expo Proceedings (Vol. 477).16 
 
[15] Duarte, M. F., & Hu, Y. H. (2004). Vehicle classification in distributed sensor networks. 
Journal of Parallel and Distributed Computing, 64(7), 826-838. 
 
[16] Haoui, A., Kavaler, R., & Varaiya, P. (2008). Wireless magnetic sensors for traffic 
surveillance. Transportation Research Part C: Emerging Technologies,16(3), 294-306. 
 
[17] Harlow, C., & Peng, S. (2001). Automatic vehicle classification system with range sensors. 
Transportation Research Part C: Emerging Technologies, 9(4), 231-247. 
 
[18] Gupta, R., & Das, S. R. (2003, October). Tracking moving targets in a smart sensor 
network. In Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th (Vol. 5, 
pp. 3035-3039). IEEE. 
 
[19] Li, D., Wong, K. D., Hu, Y. H., & Sayeed, A. M. (2002). Detection, classification, and 
tracking of targets. Signal Processing Magazine, IEEE,19(2), 17-29. 
 
[20] Cheung, Sing Yiu, Sinem Coleri Ergen, and Pravin Varaiya. "Traffic surveillance with 
wireless magnetic sensors." Proceedings of the 12th ITS world congress. Vol. 1917.2005. 
 
[21] L.  Jogschies,  D.  Klaas,  R.  Kruppe,  J.  Rittinger,  P.  Taptimthong,  A. Wienecke,  L.  
Rissing  and  M.  Wurz,  ”Recent  Developments  of  Magnetoresistive Sensors for Industrial 
Applications,” Sensors, vol. 15, no. 11, pp. 28665-28689, 2015. 
 
[22] E. Alpaydin, Introduction to Machine Learning, 3rd ed. Cambridge: MIT Press, 2014. 
 
[23]  F.  Pedregosa,  G.  Varoquaux,  A.  Gramfort,  V.  Michel  and  B.  Thirion, ”Scikit-learn: 
Machine Learning in Python,” Journal of Machine Learning Research, vol. 12, pp.2825-2830, 
2017. 
 
[24]  C.   Clark,   E.   Gazoni,   (2017,   Aug   29).   ”openpyxl   -   A   Python library   to   
read/write   Excel   xlsx/xlsm   files,”   [Online]   Available: 
https:openpyxl.readthedocs.io/en/default/# 
 
[25]  J. D. Hunter, ”Matplotlib: A 2D Graphics Environment,” in Computing in Science & 
Engineering, vol. 9, no. 3, pp. 90-95, May-June 2007. 
 
[26]  Breiman,  Leo;  Friedman,  J.  H.;  Olshen,  R.  A.;  Stone,  C.  J.  (1984). Classification   
and   regression   trees.   Monterey,   CA:   Wadsworth   & Brooks/Cole Advanced Books & 
Software. ISBN 978-0-412-04841-8. 
 



40 
 

[27]  D. Harnett, Statistical methods, 3rd ed. Reading, Mass.: Addison-Wesley, 1982. 
[28] K. Ying, A. Ameri, A. Trivedi, D. Ravindra, D. Patel, and M. Mozumdar. ”Decision  tree-
based  machine  learning  algorithm  for  in-node  vehicle classification,” In Green Energy and 
Systems Conference (IGESC), 2015. IEEE, pp. 71-76. IEEE, 2015. 
 
[29]  T.  Cormen,  C.  Leiserson,  R.  Rivest  and  C.  Stein,  Introduction  to algorithms. Cambridge, 
Massachusetts: The MIT Press, 2014. 
 
[30]  D.  Opitz  and  R.  Maclin,  ”Popular  Ensemble  Methods:  An  Empirical Study,”  Journal  
of  Artificial  Intelligence  Research  (JAIR),  vol.  11,  pp. 169-198, 1999. 
 
[31]  I.  Nitz,  U.  Schulthess  and  H.  Asche,  ”COMPARISON  OF  MACHINE LEARNING 
ALGORITHMS RANDOM FOREST, ARTIFICIAL NEURAL  NETWORK  AND  SUPPORT  
VECTOR  MACHINE  TO  MAXIMUM LIKELIHOOD FOR SUPERVISED CROP TYPE 
CLASSIFICATION,” Proc. of the 4th GEOBIA., 2012. 
 
[32]  G. Zhang, Y. Wang, and H. Wei, ”Artificial neural network method for length-based  vehicle  
classification  using  single-loop  outputs,”  Transp. Res. Rec., vol. 1945, pp. 100108, 2006. 
 
 
 
 
 
 


	Disclaimer
	Abstract
	Table of Contents
	Illustrations
	Disclosure
	Acknowledgements
	I.  Scope
	II. Introduction
	III. Related works
	IV. Methodology
	V. Hardware Development
	A. Sensor Node Hardware Design
	B. Hardware Components
	C. Hardware for Power Profiling
	D. Node Analyzer Board
	E. Power Profiling Task

	VI. Vehicle Classification and Results
	A. Decision Tree Algorithm
	B. Random Forest Algorithm
	C. Multilayer Perceptron (MLP) Algorithm
	D. Performance Analysis

	VII. Conclusions
	VIII.  References




Accessibility Report





		Filename: 

		Fine Grained 'Automatic Vehicle Classification' System Development_201804_REM.pdf









		Report created by: 

		Nellie Kamau, Catalog Librarian, Nellie.kamau.ctr@dot.gov



		Organization: 

		DOT, NTL







 [Personal and organization information from the Preferences > Identity dialog.]



Summary



The checker found problems which may prevent the document from being fully accessible.





		Needs manual check: 0



		Passed manually: 2



		Failed manually: 0



		Skipped: 0



		Passed: 26



		Failed: 4







Detailed Report





		Document





		Rule Name		Status		Description



		Accessibility permission flag		Passed		Accessibility permission flag must be set



		Image-only PDF		Passed		Document is not image-only PDF



		Tagged PDF		Passed		Document is tagged PDF



		Logical Reading Order		Passed manually		Document structure provides a logical reading order



		Primary language		Passed		Text language is specified



		Title		Passed		Document title is showing in title bar



		Bookmarks		Passed		Bookmarks are present in large documents



		Color contrast		Passed manually		Document has appropriate color contrast



		Page Content





		Rule Name		Status		Description



		Tagged content		Failed		All page content is tagged



		Tagged annotations		Passed		All annotations are tagged



		Tab order		Passed		Tab order is consistent with structure order



		Character encoding		Failed		Reliable character encoding is provided



		Tagged multimedia		Passed		All multimedia objects are tagged



		Screen flicker		Passed		Page will not cause screen flicker



		Scripts		Passed		No inaccessible scripts



		Timed responses		Passed		Page does not require timed responses



		Navigation links		Passed		Navigation links are not repetitive



		Forms





		Rule Name		Status		Description



		Tagged form fields		Passed		All form fields are tagged



		Field descriptions		Passed		All form fields have description



		Alternate Text





		Rule Name		Status		Description



		Figures alternate text		Failed		Figures require alternate text



		Nested alternate text		Passed		Alternate text that will never be read



		Associated with content		Passed		Alternate text must be associated with some content



		Hides annotation		Passed		Alternate text should not hide annotation



		Other elements alternate text		Failed		Other elements that require alternate text



		Tables





		Rule Name		Status		Description



		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot



		TH and TD		Passed		TH and TD must be children of TR



		Headers		Passed		Tables should have headers



		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column



		Summary		Passed		Tables must have a summary



		Lists





		Rule Name		Status		Description



		List items		Passed		LI must be a child of L



		Lbl and LBody		Passed		Lbl and LBody must be children of LI



		Headings





		Rule Name		Status		Description



		Appropriate nesting		Passed		Appropriate nesting










Back to Top

